Home / Electrical electronics engineering / Construction of 500w 12v inverter charger

Construction of 500w 12v inverter charger

 

Table Of Contents


Cover page

Title page I

Approval II

Dedication III

Acknowledgement IV

Abstract V

Table of content VI

List of figures VII

Chapter ONE

: INTRODUCTION

1.0 Background of the stud……………………….2

1.1 Statement of problem…………………………..

1.2 Aims and objectives……………………………4

1.3 Scope of work …………………………………4

1.4 Importance of work……………………………..4

1.5 Organization of study …………………………6

Chapter TWO

: LITERATURE REVIEW

2.0 Brief History of Inverters………………………8

2.1 Inverter application and uses ………………….8

2.2 Types of inverter ………………………………9

viii

2.3 Inverter versus other related appliances………………..10

2.3.1 Generator and inverter………………………………….10

2.3.2 Inverter and ups…………………………………………12

2.4 Mode of operation of an inverter……………………….13

2.4.1 When the AC mains supply is available………………..14

2.4.2 When the AC mains supply is not available ……………14

2.5 Component Analysis ……………………………………16

2.5.1 Ideal diodes ………………………………………………16

2.5.2 Resistors…………………………………………………….18

2.5.3 Capacitors………………………………………………..19

2.5.4 Transistors………………………………………………..20

2.5.5 Voltage regulator …………………………………………..22

2.5.6 Transformer …………………………………………….23

2.5.7 Relay…………………………………………………….24

2.5.7.1 Battery………………………………………………..26

Chapter THREE

: SYSTEM OPERATION

3.0 Block diagram and operation…………………………….27

3.1 When the AC mains supply is available…………………….27

3.2 When the AC mains supply is unavailable………………….28

3.3 Complete circuit diagram ………………………………..33

3.3.1 System operation using circuit diagram……………..34

Chapter FOUR

: DESIGN ANALYSIS AND IMPLEMENTATION

4.0 Design specifications and requirements ……………35

4.1 Design of the power supply unit ……………………35

4.2 Design of 50 Hz oscillator…………………………..37

4.3 Days (hours) of autonomy …………………………39

4.4 Depth of discharge……………………………………40

Chapter FIVE

: TESTING AND RESULT

5.0 Drive or amplifier test………………………………..43

5.1 Oscillator circuit test…………………………………43

5.3 Transformer test………………………………………44

5.4 Entire system testing………………………………….44

5.4 Battery charging evaluation ………………………….44

5.5 System evaluation ……………………………………44

5.6 Packaging …………………………………………….45

5.7 Cost of project ……………………………………….46

5.8 Maintenance cost …………………………………….49

5.9 Running cost …………………………………………49

CHAPTER SIX: CONCLUSION

6.0 Conclusion ……………………………………………50

6.1 Recommendation …………………………………….50

6.2 Problem encountered …………………………………51

6.3 Limitation/ Constraints………………………………..51

6.4 Suggestion for further improvement ………………….51

Reference

LIST OF FIGURES

Fig 2.0 Ideal diode structure

Fig 2.1 Symbol of zener diode

Fig 2.2 Symbol of light emitting diode

Fig 2.3 symbol of electrolytic capacitor

Fig 2.4 Paper capacitor

Fig 2.5 Variable capacitor

Fig 2.6 Symbol of enhancement mosfet F

ig 2.7 Symbol of npn transistor

Fig 2.8 Symbol of voltage regulator (7808 Ic)

Fig 2.9 Core type transformer

Fig 2.10 Symbol of a transformer

Fig 3.1 Block diagram of basic inverter

Fig 3.2 Complete circuit diagram of 500 watts/inverter


Thesis Abstract

An inverter is a system which is capable of converting DC voltage from a battery into AC voltage. The Inverter constructed converts 12V dc to 220V Ac. It consists of an oscillator section using 8V dc to produce 50Hz sine wave. The sine wave is amplified by Tip 41 and used to drive IRPF250 MOSFET power transistors capable of delivering 500W nominally. The mosfet switches the 12V dc across the high current transformer which then produces the Ac at its output. The output of the transformer is a square wave but has been converted to a near sine wave using some RC circuit.
There is also a provision in the system to charge the battery when PHCN is on as the inverter is expected to function only PHCN is off.

Thesis Overview

Blazingprojects Mobile App

📚 Over 50,000 Research Thesis
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Thesis-to-Journal Publication
🎓 Undergraduate/Postgraduate Thesis
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Electrical electroni. 3 min read

Design and Implementation of Smart Grid Technology for Renewable Energy Integration ...

The project titled "Design and Implementation of Smart Grid Technology for Renewable Energy Integration in Microgrids" focuses on the development and ...

BP
Blazingprojects
Read more →
Electrical electroni. 4 min read

Design and implementation of an energy-efficient smart home system using IoT technol...

The project titled "Design and Implementation of an Energy-Efficient Smart Home System Using IoT Technology" focuses on the development of a cutting-e...

BP
Blazingprojects
Read more →
Electrical electroni. 4 min read

Design and implementation of a smart grid system for efficient energy management...

The project on the "Design and Implementation of a Smart Grid System for Efficient Energy Management" aims to address the growing need for sustainable...

BP
Blazingprojects
Read more →
Electrical electroni. 2 min read

Design and Implementation of a Smart Home Automation System Using Internet of Things...

The project titled "Design and Implementation of a Smart Home Automation System Using Internet of Things (IoT) Technology" aims to explore the integra...

BP
Blazingprojects
Read more →
Electrical electroni. 3 min read

Design and implementation of a smart home energy management system using Internet of...

The project titled "Design and implementation of a smart home energy management system using Internet of Things (IoT) technology" aims to address the ...

BP
Blazingprojects
Read more →
Electrical electroni. 3 min read

Design and implementation of real-time power monitoring system using IoT technology ...

The project titled "Design and Implementation of Real-Time Power Monitoring System Using IoT Technology for Smart Homes" focuses on the development of...

BP
Blazingprojects
Read more →
Electrical electroni. 3 min read

Design and Implementation of Power Factor Correction Circuit for Residential Applica...

The project on "Design and Implementation of Power Factor Correction Circuit for Residential Applications" aims to address the issue of power factor i...

BP
Blazingprojects
Read more →
Electrical electroni. 3 min read

Design and Implementation of a Smart Grid System Using IoT Technology in a Local Pow...

The project "Design and Implementation of a Smart Grid System Using IoT Technology in a Local Power Distribution Network" aims to revolutionize the tr...

BP
Blazingprojects
Read more →
Electrical electroni. 2 min read

Design and Implementation of an IoT-based Home Energy Management System...

The project titled "Design and Implementation of an IoT-based Home Energy Management System" aims to address the growing demand for efficient energy m...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us