The recent development for multimedia applications on mobile terminals raised the need for flexible and scalable computing platforms that are capable of providing considerable (application specific) computational performance within a low cost and a low energy budget.
The MPSoC with multi-disciplinary approach, resolving application mapping, platform architecture and runtime management issues, provides such multiple heterogeneous, flexible processing elements. In MPSoC, the run-time manager takes the design time exploration information as an input and selects an active Pareto point based on quality requirement and available platform resources, where a Pareto point corresponds to a particular parallelization possibility of target application.
To use systemβs scalability at best and enhance applicationβs flexibility a step further, the resource management and Pareto point selection decisions need to be adjustable at run-time. This thesis work experiments run-time Pareto point switching for MPEG-4 encoder. The work involves design time exploration and then embedding of two parallelization possibilities of MPEG-4 encoder into one single component and enabling run-time switching between parallelizations, to give run-time control over adjusting performance-cost criteria and allocation de-allocation of hardware resources at run-time.
The newer system has the capability to encode each video frame with different parallelization. The obtained results offer a number of operating points on Pareto curve in between the previous ones at sequence encoding level. The run-time manager can improve application performance up to 50% or can save memory bandwidth up to 15%, according to quality request.
π Over 50,000 Research Thesis
π± 100% Offline: No internet needed
π Over 98 Departments
π Thesis-to-Journal Publication
π Undergraduate/Postgraduate Thesis
π₯ Instant Whatsapp/Email Delivery
The project titled "Design and Implementation of Smart Grid Technology for Renewable Energy Integration in Microgrids" focuses on the development and ...
The project titled "Design and Implementation of an Energy-Efficient Smart Home System Using IoT Technology" focuses on the development of a cutting-e...
The project on the "Design and Implementation of a Smart Grid System for Efficient Energy Management" aims to address the growing need for sustainable...
The project titled "Design and Implementation of a Smart Home Automation System Using Internet of Things (IoT) Technology" aims to explore the integra...
The project titled "Design and implementation of a smart home energy management system using Internet of Things (IoT) technology" aims to address the ...
The project titled "Design and Implementation of Real-Time Power Monitoring System Using IoT Technology for Smart Homes" focuses on the development of...
The project on "Design and Implementation of Power Factor Correction Circuit for Residential Applications" aims to address the issue of power factor i...
The project "Design and Implementation of a Smart Grid System Using IoT Technology in a Local Power Distribution Network" aims to revolutionize the tr...
The project titled "Design and Implementation of an IoT-based Home Energy Management System" aims to address the growing demand for efficient energy m...