Home / Electrical electronics engineering / Design_and_construction_of_an_inverter_type_arc_welding_machine

Design_and_construction_of_an_inverter_type_arc_welding_machine

 

Table Of Contents


Thesis Abstract

Abstract
This research project focuses on the design and construction of an inverter-type arc welding machine. Arc welding is a commonly used method for joining metals in various industries due to its versatility and efficiency. Inverter-type welding machines are becoming increasingly popular due to their compact size, lightweight, and energy-efficient operation compared to traditional welding machines. The primary objective of this project is to design and construct a portable inverter-type arc welding machine that is capable of producing high-quality welds while being user-friendly and cost-effective. The machine will be designed to operate on a standard electrical power supply and provide adjustable welding parameters to accommodate different types of welding tasks. The design process will involve selecting suitable components such as IGBT modules, capacitors, transformers, and control circuitry to ensure reliable and efficient operation of the welding machine. The construction phase will involve assembling the selected components onto a sturdy and compact chassis, along with proper insulation and cooling mechanisms to ensure safe and reliable operation. The welding machine will be designed to provide a stable arc, precise control over welding current, and suitable protection mechanisms to prevent overheating and electrical faults. The user interface will be designed to be intuitive and easy to operate, allowing users to adjust welding parameters such as current, voltage, and welding speed according to their specific requirements. Performance testing will be conducted to evaluate the welding machine's capabilities in terms of weld quality, power efficiency, and overall reliability. The machine will be tested on various types of metals and welding techniques to ensure its versatility and compatibility with different welding applications. Overall, this project aims to contribute to the advancement of welding technology by designing and constructing a portable, efficient, and user-friendly inverter-type arc welding machine. The successful completion of this project will provide a valuable resource for welding professionals, hobbyists, and small-scale industries looking for a reliable and cost-effective welding solution.

Thesis Overview

INTRODUCTION
1.1 THE BACKGROUND
Welding is a way of heating pieces of metal using electricity or a flame so that they melt and stick together. It can simply be defined as the process of joining two or more pieces of metal to make the act as a single piece. This is often done by melting the work pieces and adding a filler material to form a pool of molten material that cools to become a strong joint. Because of its strength, welding is used to join beams when constructing buildings, bridges and other structures. Welding can also be used to join pipes in pipelines, power plants at the construction sites and in home appliance. Furthermore, welding is used in shipbuilding, automobile manufacturing and repair, aerospace applications. There are many kinds of welding which include arc welding, resistance welding, gas welding among others. Emphasis will be laid on arc welding because it is the most common type of welding as well as the main aim of this project.
Arc welding is the process of welding that utilizes an electrical discharge (arc) to join similar materials together. Equipment that performs the welding operation under the observation and control of a welding operator is known as welding machine. To solve the problem of weight and size of conventional arc
welding machine, it is necessary to design an inverter. The inverter provides much higher frequency than 50Hz or 60Hz supply for transformer used in welding. So transformer of much smaller mass is used to permit the handling of much greater output power. The welding noise produce by conventional arc welding machine is reduced by selecting the operating frequency over the hearing of human ability. The choice of 20Khz for the inverter type arc welding machine was determined to meet the above expectation. The output welding current is controlled by controlling the power supply for transformer at high frequency. This power supply is provided by a frequency inverter. Power switch IGBTs (Insulated Gate Bipolar Transistor) or MOSFETs is used for the inverter design due to its high switching. The control circuit use to control the output welding current is design to drive the power switch at high frequency. Insulated Gate Bipolar Transistor power switch is more efficient and less prone to failure than MOSFETs power switch.
1.2 AIMS AND OBJECTIVES OF THE PROJECT
The main aim and objective of this project is to design and build and arc welding machine that operates on 36vdc at variable frequency which of benefit to urban area. This reduces the weight and size of the transformer use for welding. To have an arc welding machine that is more efficient which produce neat welding.
1.3 SIGNIFICANT OF THE STUDY
The significant of this project is that it seeks to develop an arc welding machine that is cost effective, strong and portable. Not only that the arc welding machine is strong and portable, it is also mobile.
1.4 LIMITATION OF THE PROJECT
The project has certain limitations which are mentioned below.
 This project cannot weld bigger gauge of metals.
 The welding time and power depends on the battery input power.
 You are to have bands of battery for reliability when using battery.
 The machine must be used by a qualified welder. Welding can endanger the operator or people near the working area. Therefore, the performance of welding and cutting must only be done under the comprehensive observation of all relevant safety regulation.
 Switch function modes during welding could potentially damage the equipment. A safety switch is necessary to prevent the equipment from electric leakage. Use only high quality welding tools and equipment with this inverter type arc welding machine.
1.5 PROJECT REPORT ORGANIZATION
The organization of the project report is well detailed and vast in its coverage. It covers all the activities encountered during the research work. The first chapter is the introductory chapter which covers the background, project objectives, project justification, and scope of the project. Chapter two presents the literature reviews. Chapter three covers the system analysis and design methodology in details. Chapter four presents the system implementation which entails the circuits diagram of different stages and also the complete schematic diagram with necessary calculation involve in the design. Chapter five is emphasis on conclusion, problem encountered during project design, recommendations and suggestion for further improvement. Fig1.1 depicts an overview of project report organization.

Blazingprojects Mobile App

📚 Over 50,000 Research Thesis
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Thesis-to-Journal Publication
🎓 Undergraduate/Postgraduate Thesis
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Electrical electroni. 2 min read

Design and Implementation of Smart Grid Technology for Renewable Energy Integration ...

The project titled "Design and Implementation of Smart Grid Technology for Renewable Energy Integration in Microgrids" focuses on the development and ...

BP
Blazingprojects
Read more →
Electrical electroni. 4 min read

Design and implementation of an energy-efficient smart home system using IoT technol...

The project titled "Design and Implementation of an Energy-Efficient Smart Home System Using IoT Technology" focuses on the development of a cutting-e...

BP
Blazingprojects
Read more →
Electrical electroni. 2 min read

Design and implementation of a smart grid system for efficient energy management...

The project on the "Design and Implementation of a Smart Grid System for Efficient Energy Management" aims to address the growing need for sustainable...

BP
Blazingprojects
Read more →
Electrical electroni. 2 min read

Design and Implementation of a Smart Home Automation System Using Internet of Things...

The project titled "Design and Implementation of a Smart Home Automation System Using Internet of Things (IoT) Technology" aims to explore the integra...

BP
Blazingprojects
Read more →
Electrical electroni. 2 min read

Design and implementation of a smart home energy management system using Internet of...

The project titled "Design and implementation of a smart home energy management system using Internet of Things (IoT) technology" aims to address the ...

BP
Blazingprojects
Read more →
Electrical electroni. 3 min read

Design and implementation of real-time power monitoring system using IoT technology ...

The project titled "Design and Implementation of Real-Time Power Monitoring System Using IoT Technology for Smart Homes" focuses on the development of...

BP
Blazingprojects
Read more →
Electrical electroni. 4 min read

Design and Implementation of Power Factor Correction Circuit for Residential Applica...

The project on "Design and Implementation of Power Factor Correction Circuit for Residential Applications" aims to address the issue of power factor i...

BP
Blazingprojects
Read more →
Electrical electroni. 3 min read

Design and Implementation of a Smart Grid System Using IoT Technology in a Local Pow...

The project "Design and Implementation of a Smart Grid System Using IoT Technology in a Local Power Distribution Network" aims to revolutionize the tr...

BP
Blazingprojects
Read more →
Electrical electroni. 3 min read

Design and Implementation of an IoT-based Home Energy Management System...

The project titled "Design and Implementation of an IoT-based Home Energy Management System" aims to address the growing demand for efficient energy m...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us