Home / Chemical engineering / The effect of temperature on hydrolysis of cellulose

The effect of temperature on hydrolysis of cellulose

 

Table Of Contents


Thesis Abstract

Abstract
Cellulose is the most abundant biopolymer on Earth, making it a crucial resource for various industries, particularly in biofuel production. The hydrolysis of cellulose, which breaks down the complex polysaccharide into simpler sugars, is a key step in the conversion of cellulose to biofuels. Temperature is a critical factor that influences the rate and efficiency of cellulose hydrolysis. This study aims to investigate the effect of temperature on the hydrolysis of cellulose and to determine the optimal temperature conditions for maximizing sugar yields. In this research, cellulose samples were subjected to hydrolysis under varying temperature conditions ranging from 40°C to 80°C. The hydrolysis reactions were carried out using an acidic catalyst at a constant pH to ensure consistency in the experimental conditions. The progress of hydrolysis was monitored by measuring the concentration of reducing sugars produced over time. The results indicated that the rate of cellulose hydrolysis increased with increasing temperature up to a certain point, beyond which further temperature elevation led to a decrease in hydrolysis efficiency. At lower temperatures, the hydrolysis of cellulose was slower due to limited kinetic energy for breaking the glycosidic bonds in the cellulose chain. As the temperature was raised within a certain range, the reaction rate increased significantly as the molecules gained more thermal energy, enabling them to overcome the activation energy barrier more easily. However, at higher temperatures, the thermal degradation of sugars and the catalyst may have contributed to a decline in hydrolysis efficiency. The optimal temperature for cellulose hydrolysis was found to be around 60°C in this study. At this temperature, the balance between increased reaction rate and minimized thermal degradation of products resulted in the highest sugar yields. Beyond this temperature, the benefits of enhanced reaction kinetics were outweighed by the negative impact of thermal degradation. These findings highlight the importance of optimizing temperature conditions in cellulose hydrolysis processes to achieve maximum sugar yields for biofuel production. In conclusion, temperature plays a significant role in the hydrolysis of cellulose, affecting the rate and efficiency of the process. Understanding the temperature dependence of cellulose hydrolysis is essential for designing effective biofuel production processes that are both economically viable and environmentally sustainable.

Thesis Overview

1.1 Introduction
Cellulose is the name given to a long chain of atoms consisting of carbon, hydrogen and oxygen arranged in a particular manner it is a naturally occurring polymeric material containing thousands of glucose-like rings each of which contain three alcoholic OH groups. Its general each of which contain three alcoholic OH groups. Its general formula is represented as (C6H1005)n. the oh-groups present in cellulose can be esterifies or etherified, the most important cellulose derivatives are the esters.
Cellulose is found in nature in almost all forms of plant life’s, and especially in cotton and wood. A cellulose molecule is made up of large number of glucose units linked together by oxygen atom. Each glucose unit contains three(3) hydroxyl groups, the hydroxyl groups present at carbon-6 is primary, while two other hydroxyl are secondary. Cellulose is the most abundant organic chemical on earth more than 50% of the carbon is plants occurs in the cellulose of stems and leave wood is largely cellulose, and cotton is more than 90% cellulose. It is a major constituent of plant cell walls that
11
provides strength and rigidity and presents the swelling of the cell and rupture of the palms membrane that might result when osmotic conditions favor water entry into the cell. Cellulose is a fibrous, ought, water-insoluble substances, it can be seen in cell walls of plants, particularly in stalks, stems, trunks and all woody portions of the plant.
Cellulose is polymorphic, i.e there are number of different crystalline forms that reflect the history of the molecule. It is almost impossible to describe cellulose chemistry and biochemistry without referring to those different forms. Cellulose are gotten from cellulose, cellulose is also found in protozoa in the gut of insects such as termites. Very strong acids can also degrade cellulose, the human digestive system has little effect on cellulose. The world cellulose means β-1, 4- D glucan, regardless of source because of the importance of cellulose and difficulty in unraveling its secrets regarding structure, biosynthesis, chemistry, and other aspects, several societies are dedicated to cellulose, lignin, and related molecues.
12
1.2 Definition of Terms
Hydrolysis: means hydro (water) lysis (splitting) or breaking down of a chemical bond by the addition of water (H2O), it is by the introduction of the elements that make up water hydrogen and oxygen. The reactions are more complicated than just adding water to a compound, but by the end of a hydrolysis reaction, there will be two more hydrogen’s and one more oxygen shared between the products, than there were before the reaction occurred.
Hydrolysis of cellulose therefore is the process of breaking down the glucosidic bonds that holds the glucose basic units together to term a large cellulose molecule, it is a term used to describe the overall process where cellulsose is converted into various sweeteners.
Sugar: is the generalized name for a class of chemically related sweet – flavored substances, most of which are used as food. They are carbohydrates, composed of carbon, hydrogen and oxygen. There are various sugar derived from different sources. Simple sugars are called monosaccharide’s and include glucose cellos known as dextrose, fructose and galactose. The table or granulated
13
sugar most customarily used as food is sucrose, a disaccharide other disacclarides include maltose and lacoose. Chemically-different substances may also have a sweet taste, but are not classified as sugar but as artificial sweeteners.

Blazingprojects Mobile App

📚 Over 50,000 Research Thesis
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Thesis-to-Journal Publication
🎓 Undergraduate/Postgraduate Thesis
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Chemical engineering. 3 min read

Development of a Novel Process for the Sustainable Production of Biofuels from Algae...

The project titled "Development of a Novel Process for the Sustainable Production of Biofuels from Algae" aims to address the pressing need for sustai...

BP
Blazingprojects
Read more →
Chemical engineering. 4 min read

Optimization of Biofuel Production from Algae Biomass Using Supercritical Fluid Extr...

The project "Optimization of Biofuel Production from Algae Biomass Using Supercritical Fluid Extraction" aims to explore a sustainable and efficient m...

BP
Blazingprojects
Read more →
Chemical engineering. 4 min read

Optimization of Reaction Conditions for Biodiesel Production Using Heterogeneous Cat...

The project titled "Optimization of Reaction Conditions for Biodiesel Production Using Heterogeneous Catalysts" aims to address the growing demand for...

BP
Blazingprojects
Read more →
Chemical engineering. 4 min read

Optimization of a Hydrogen Production Process using Renewable Energy Sources in a Ch...

The project titled "Optimization of a Hydrogen Production Process using Renewable Energy Sources in a Chemical Plant" aims to address the increasing g...

BP
Blazingprojects
Read more →
Chemical engineering. 3 min read

Design and Optimization of a Sustainable Process for Biodiesel Production from Waste...

The project titled "Design and Optimization of a Sustainable Process for Biodiesel Production from Waste Cooking Oil" aims to address the significant ...

BP
Blazingprojects
Read more →
Chemical engineering. 2 min read

Optimization of Chemical Reactor Design for Sustainable Production Processes...

The project titled "Optimization of Chemical Reactor Design for Sustainable Production Processes" aims to address the critical need for sustainable pr...

BP
Blazingprojects
Read more →
Chemical engineering. 4 min read

Optimization of Bioreactor Design for Enhanced Production of Biofuels...

The research project, titled "Optimization of Bioreactor Design for Enhanced Production of Biofuels," aims to address the growing demand for sustainab...

BP
Blazingprojects
Read more →
Chemical engineering. 2 min read

Optimization of Biogas Production from Food Waste through Anaerobic Digestion...

The project titled "Optimization of Biogas Production from Food Waste through Anaerobic Digestion" aims to address the pressing need for sustainable w...

BP
Blazingprojects
Read more →
Chemical engineering. 3 min read

Design and Optimization of a Chemical Process for Renewable Energy Production...

The project titled "Design and Optimization of a Chemical Process for Renewable Energy Production" aims to address the growing global demand for susta...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us