Home / Biology edcuation / TO PRODUCE AND CHARACTERIZE ACTIVATED CARBON FROM SUGARCANE BAGASSE BY THERMAL METHOD

TO PRODUCE AND CHARACTERIZE ACTIVATED CARBON FROM SUGARCANE BAGASSE BY THERMAL METHOD

 

Table Of Contents


Title page   —       –       –       –       –       –       –       –       –       –       – i    

Declaration —       –       –       –       –       –       –       –       –       –       -ii

Approval page —   –       –       –       –       –       –       –       –       –       -iii

Dedication —         –       –       –       –       –       –       –       –       –       -iv

Acknowledgement —       –       –       –       –       –       –       –       –       -v    

Table of content   —         –       –       –       –       –       –       –       –       -vi                 Abstract —   –       –       –       –       –       –       –       –       –       –       -vii


Thesis Abstract

Abstract
This research project focuses on the production and characterization of activated carbon derived from sugarcane bagasse using a thermal activation method. Sugarcane bagasse is an abundant agricultural waste material that has the potential to be converted into a value-added product such as activated carbon. The thermal activation process involves subjecting the sugarcane bagasse to high temperatures in the absence of oxygen, leading to the development of porous structures within the material. The resulting activated carbon is expected to possess high surface area and porosity, making it suitable for various applications such as water treatment, air purification, and energy storage. The project aims to optimize the thermal activation process parameters, including temperature, heating rate, and activation time, to achieve the desired properties in the activated carbon. Characterization of the activated carbon will be performed using various analytical techniques such as scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and Fourier-transform infrared (FTIR) spectroscopy. The SEM analysis will provide information on the surface morphology of the activated carbon, while BET analysis will determine the specific surface area and pore size distribution. FTIR spectroscopy will be used to identify functional groups present in the activated carbon structure. Furthermore, the adsorption capacity of the activated carbon will be evaluated by conducting adsorption experiments using model pollutants such as dyes or heavy metals. The adsorption efficiency of the activated carbon will be compared with commercial activated carbon materials to assess its potential for practical applications. The study will also investigate the reusability of the activated carbon through regeneration experiments to evaluate its long-term performance and economic feasibility. Overall, this research project aims to contribute to the sustainable utilization of sugarcane bagasse as a feedstock for the production of activated carbon with enhanced properties. The findings of this study can have implications for waste management in the sugarcane industry and provide a green alternative to conventional activated carbon production methods. By converting a readily available agricultural waste into a valuable product, this project aligns with the principles of circular economy and resource efficiency.

Thesis Overview

1.0 INTRODUCTION

1.1 Background of the Study

Activated carbon also called activated charcoal is a carbonaceous, highly porous adsorptive medium that has a complex structure which comprises primarily of carbon atoms. The activated carbons are channels created within a rigid, skeleton of disordered layers of carbon atoms, linked together by chemical bonds, stacked unevenly, creating a highly porous structure of nooks, crannies, cracks and crevices between the carbon layers. (Sheffler, 1996).

Activated carbon are manufactured from lignocellulose materials (the combination of lignin and cellulose in the structural cells of woody plants), coal, petroleum coke, coconut shell, sugarcane bagasse and other agricultural materials. (Girgis and Ishak, 1999). Activation by different method or high temperature mechanisms are used in the production of activated carbons from these raw materials.

The intrinsic pore network in the lattice structure of activated carbons allows the removal of impurities from gaseous and liquid media through a mechanism referred to as adsorption. (Larteet al., 1999). Activated carbon is mainly available in three forms namely powdered, granular and extruded form and each form is available in many sizes, Based upon the application and requirements.

The importance of activated carbon to an ever growing society cannot be over emphasized considering its enormous uses. Its uses ranges from liquid phase to gaseous-phase applications in domestic, commercial, health care centers and industrial settings. (Hassler, 1963).

In many water treatment applications, activated carbon has proved to be the least expensive treatment option. One of the major attributes of activated carbon treatment is its ability to remove a wide variety of toxic organic compounds to non-detectible levels (99.9%). (Mendez et al, 2006).

The basic method of producing activated carbon from sugarcane bagasse are the physical and chemical methods. Both methods can combine in efforts to produce higher surface area. (Baksi et al., 2006).

1.2 Research Problem Statement

Sugarcane bagasse is a waste material constituting an environmental problem. The material is found to indiscriminately liter most cities in the northern Nigeria. However, it can be put into proper use by treating and transforming it. Preparation of activated carbon from sugarcane bagasse using thermal method will go a long way to solving the environmental problem constituted by the sugarcane bagasse and it could also be a major research guide in the study of activated carbon.

1.3 Aim and Objectives

The aim of this research is to produce and characterize activated carbon from sugarcane bagasse by thermal method. The objectives of this research are as follows;

ü To investigate the effect of temperature on the quality of the activated carbon produced.

ü To characterize the activated carbon produced.

1.4 Scope

The scope of the research work includes

·       To investigate the effect of temperature from 500, 550 and 600oc on the quality of the activated carbon produced.

·       To analyze the activated carbon through FTIR and proximate analysis.

·       Preparation of activated carbon from sugarcane bagasse.

·       Characterization of activated carbon produced from sugarcane bagasse.

1.5 Relevance of the Research

a)   Utilization of available raw materials and waste materials.

b)   Creation of job opportunity.

c)   Generation of revenue.

1.6 Justification

Sugarcane bagasse is a locally available raw material which is not expensive but has a great effect in the production of activated carbon. The method of production is safe and easy.


Blazingprojects Mobile App

📚 Over 50,000 Research Thesis
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Thesis-to-Journal Publication
🎓 Undergraduate/Postgraduate Thesis
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Biology edcuation. 4 min read

Assessing the effectiveness of multimedia simulations in teaching cellular respirat...

...

BP
Blazingprojects
Read more →
Biology edcuation. 3 min read

Exploring the impact of outdoor fieldwork on student attitudes towards biology....

...

BP
Blazingprojects
Read more →
Biology edcuation. 2 min read

Investigating the use of concept mapping in teaching biological classification....

...

BP
Blazingprojects
Read more →
Biology edcuation. 4 min read

Analyzing the influence of cultural diversity on biology education....

...

BP
Blazingprojects
Read more →
Biology edcuation. 3 min read

Assessing the impact of cooperative learning on student understanding of genetics....

...

BP
Blazingprojects
Read more →
Biology edcuation. 2 min read

Investigating the effectiveness of online quizzes in promoting biology knowledge re...

...

BP
Blazingprojects
Read more →
Biology edcuation. 3 min read

Exploring the use of storytelling in teaching ecological concepts....

...

BP
Blazingprojects
Read more →
Biology edcuation. 3 min read

Analyzing the impact of teacher-student relationships on student achievement in biol...

...

BP
Blazingprojects
Read more →
Biology edcuation. 4 min read

Investigating the role of metacognitive strategies in biology learning....

...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us