Home / Industrial chemistry / The_study_of_properties_of_briquette_produced_from_groundnut_shell_coal_blend

The_study_of_properties_of_briquette_produced_from_groundnut_shell_coal_blend

 

Table Of Contents


Project Abstract

Abstract
The utilization of biomass waste such as groundnut shells for briquette production has gained attention due to its potential as an alternative fuel source. In this study, briquettes were produced from a blend of groundnut shell and coal to investigate their properties. The groundnut shell and coal blend ratios were varied to determine the optimal mixture for briquette production. Physical and combustion characteristics of the briquettes were analyzed to evaluate their quality and potential as a sustainable fuel source. The study involved the preparation of groundnut shell and coal blend briquettes using a manual briquetting machine. Different ratios of groundnut shell to coal were tested to determine their impact on the briquette properties. The briquettes were analyzed for density, compressive strength, moisture content, ash content, calorific value, and burning rate to assess their quality and performance as a fuel source. The results indicated that the blend ratio of groundnut shell to coal significantly influenced the properties of the briquettes. Increasing the proportion of groundnut shell in the blend generally led to higher moisture content and ash content in the briquettes. However, an optimal blend ratio was identified to achieve a balance between physical strength and combustion efficiency of the briquettes. The density and compressive strength of the briquettes were found to increase with higher coal content in the blend, indicating better mechanical properties. The calorific value of the briquettes also showed a positive correlation with the coal content, suggesting higher energy output during combustion. Additionally, the burning rate of the briquettes was influenced by the blend ratio, with variations observed in the combustion profiles. Overall, the study demonstrated that groundnut shell and coal blend briquettes have the potential to be an effective and sustainable fuel source. By optimizing the blend ratio, it is possible to produce briquettes with desirable physical and combustion properties. The findings of this research can contribute to the utilization of biomass waste for energy production, offering an environmentally friendly alternative to traditional fossil fuels. Further research could focus on scaling up production and exploring the economic feasibility of utilizing groundnut shell coal blend briquettes for commercial applications.

Project Overview

1.0 INTRODUCTION
1.1 Background of the study
Biomass, particularly agricultural residues seem to be one of the most promising energy resources for developing countries (Patomsok, 2008). Rural households and minority of urban dwellers depend solely on fuel woods (charcoal, firewood and sawdust) as their primary sources of energy for the past decades (Onuegbu, 2010). Of all the available energy resources in Nigeria, coal and coal derivatives such as smokeless coal briquettes, bio-coal briquettes, and biomass briquettes have been shown to have the highest potential for use as suitable alternative to coal/ fuel wood in industrial boiler and brick kiln for thermal application and domestic purposes. Global warming has become an international concern. Global warming is caused by green house gasses which carbon dioxide is among the major contributors. It was shown that increased emissions of CO2 have been drastically reduced owing to the fact that the rate of deforestation is higher than the afforestation effort in the country.
The use of fuel wood for cooking has health implications especially on women and children who are disproportionately exposed to the smoke apart from environmental effects. Women in rural areas frequently with young children carried on their back or staying around them, spend one to six hours each day cooking with fuel wood. In some areas, the exposure is even higher especially when the cooking is done in an unventilated place or where fuel wood is used for heating of rooms. Generally, biomass smoke contains a large number of pollutants which at varying concentrations pose substantial risk to human health. Among hundreds of the pollutants and irritants are particulate matters, 1, 2-butadiene and benzene (Schirnding and Bruce, 2002). Studies showed that indoor air pollution levels from combustion of bio fuels in Africa are extremely high, and it is often many times above the standard set by US Environment Protection Agency (US-EPA) for ambient level of these pollutants (USEPA, 1997). Exposure to biomass smoke increases the risk of range of common diseases both in children and in adult. The smoke causes acute lower respiratory infection (ALRI) particularly pneumonia in children (Smith and Samet, 2000; Ezzati and Kammen, 2001).
Agro waste is the most promising energy resource for developing countries like ours. The decreasing availability of fuel woods has necessitated that efforts be made towards efficient utilization of agricultural wastes. These wastes have acquired considerably importance as fuels for many purposes, for instance, domestic cooking and industrial heating. Some of these agricultural wastes for example, coconut shell, wood pulp and wood waste can be utilized directly as fuels.
Fortunately, researches have shown that a cleaner, affordable fuel source which is a substitute to fuel wood can be produced by blending biomass (agricultural residues and wastes) with coal. Nigeria has large coal deposit which has remained untapped since 1950’s, following the discovery of petroleum in the country. Also, millions of tones of agricultural wastes are generated in Nigeria annually. But it is unfortunate that farmers still practice β€œslash-and-burn” agriculture.
These agricultural wastes they encounter during clearing of land for farming or during processing of agricultural produce are usually burnt off. By this practice, not only that the useful raw materials are wasted, it further pollutes the environment and reduces soil fertility.
On the other hand, the majority of the huge materials are not suitable to be used directly as fuel without undergoing some processes. This is probably as a result of inappropriate density and high moisture contents and these factors may cause problems in transportation, handling and storage. Most of these wastes are left to decompose or when they are burnt, there would be environmental pollution and degradation (Jekayinfa, and Omisakin, 2005). Researchers have shown that lots of potential energies are abounding in these residues (Fapetu, 2000). Hence, there is a need to convert these wastes into forms that can alleviate the problems they pose when use directly. An assessment of the potential availability of selected residues from maize, cassava, millet, plantain, groundnuts, sorghum, oil palm, palm kernel, and cowpeas for possible conversion to renewable energy in Nigeria has been made (Jekayinfa and Scholz, 2009).
However, these health hazard faced by people from the use of fuel wood, along with the agricultural wastes management and reduction of pressure mounted on the forest can be mitigated if Nigeria will switch over to production and utilization of bio-coal briquette; a cleaner, and environmental friendly fuel wood substitute made from agricultural wastes and coal. Moreover, this will offer a good potential for utilization of a large coal reserve in Nigeria for economic diversification and employment generation through bio-coal briquette.
In countries like Japan, China and India, it was observed that agricultural waste (agro residues) can also be briquetted and used as substitute for wood fuel. Every year, millions of tonnes of agricultural waste are generated. These are either not used or burnt inefficiently in their loose form causing air pollution to the environment. The major residues are rice husk, corn cob, coconut shell, jute stick, groundnut shell, cotton stalk, etc. These wastes provide energy by converting into high-density fuel briquettes. These briquettes are very cheap, even cheaper than coal briquettes. Adoption of briquette technology will not only create a safe and hygienic way of disposing the waste, but turn into a cash rich venture by converting waste into energy and also contributing towards a better environment.
Coal can be blended with a small quantity of these agricultural waste (agro residues) to produce briquettes (bio-coal briquettes) which ignites fast, burn efficiently, producing little or no smoke and are cheaper than coal briquettes

Blazingprojects Mobile App

πŸ“š Over 50,000 Project Materials
πŸ“± 100% Offline: No internet needed
πŸ“ Over 98 Departments
πŸ” Software coding and Machine construction
πŸŽ“ Postgraduate/Undergraduate Research works
πŸ“₯ Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Industrial chemistry. 3 min read

Development of Advanced Catalysts for Green Chemistry Applications in Industrial Pro...

The project titled "Development of Advanced Catalysts for Green Chemistry Applications in Industrial Processes" aims to address the growing need for s...

BP
Blazingprojects
Read more β†’
Industrial chemistry. 2 min read

Synthesis and Characterization of Green Catalysts for Sustainable Chemical Processes...

The project topic, "Synthesis and Characterization of Green Catalysts for Sustainable Chemical Processes in Industrial Applications," focuses on the d...

BP
Blazingprojects
Read more β†’
Industrial chemistry. 2 min read

Development of Novel Catalysts for Green Chemistry Applications in Industrial Proces...

The project titled "Development of Novel Catalysts for Green Chemistry Applications in Industrial Processes" aims to address the growing need for sust...

BP
Blazingprojects
Read more β†’
Industrial chemistry. 4 min read

Synthesis and Characterization of Sustainable Biodegradable Polymers for Packaging A...

The project on "Synthesis and Characterization of Sustainable Biodegradable Polymers for Packaging Applications in the Food Industry" aims to address ...

BP
Blazingprojects
Read more β†’
Industrial chemistry. 2 min read

Green Chemistry Approaches for Sustainable Industrial Processes...

The project topic, "Green Chemistry Approaches for Sustainable Industrial Processes," focuses on the application of green chemistry principles in indu...

BP
Blazingprojects
Read more β†’
Industrial chemistry. 3 min read

Development of Sustainable Processes for the Production of Green Fuels...

The project "Development of Sustainable Processes for the Production of Green Fuels" focuses on addressing the pressing need for renewable and environ...

BP
Blazingprojects
Read more β†’
Industrial chemistry. 3 min read

Application of Green Chemistry Principles in Industrial Processes...

The project topic "Application of Green Chemistry Principles in Industrial Processes" focuses on the utilization of green chemistry principles to enha...

BP
Blazingprojects
Read more β†’
Industrial chemistry. 2 min read

Investigation of green chemistry approaches for the sustainable production of specia...

The project titled "Investigation of green chemistry approaches for the sustainable production of specialty chemicals in the industrial sector" aims t...

BP
Blazingprojects
Read more β†’
Industrial chemistry. 2 min read

Development of Sustainable Methods for Waste Water Treatment in Industrial Processes...

The project topic, "Development of Sustainable Methods for Waste Water Treatment in Industrial Processes," focuses on addressing the critical need for...

BP
Blazingprojects
Read more β†’
WhatsApp Click here to chat with us