Home / Geophysics / USE OF SINGLE-POINT RESISTANCE AND SP LOGGING IN GROUNDWATER INVESTIGATION

USE OF SINGLE-POINT RESISTANCE AND SP LOGGING IN GROUNDWATER INVESTIGATION

 

Table Of Contents


<p> </p><p>Title page &nbsp; — &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – i &nbsp; &nbsp; </p><p>Declaration — &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -ii</p><p>Approval page — &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -iii</p><p>Dedication — &nbsp; &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -iv</p><p>Acknowledgement — &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -v &nbsp; &nbsp; </p><p>Table of content &nbsp; — &nbsp; &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -vi &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Abstract — &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -vii</p> <br><p></p>

Project Abstract

Abstract
Groundwater investigation is a crucial aspect of water resource management and development. Various techniques are employed to assess the characteristics of aquifers and determine the potential for groundwater extraction. This study focuses on the use of Single-Point Resistance (SPR) and Spontaneous Potential (SP) logging as geophysical methods for groundwater investigation. The Single-Point Resistance (SPR) method involves measuring the electrical resistance of the subsurface materials using a pair of electrodes inserted into the ground. This method is based on the principle that different materials have varying electrical resistivity, allowing for the identification of subsurface layers and potential groundwater zones. The SPR technique is particularly useful in delineating lithological changes, identifying aquifer boundaries, and detecting subsurface fractures or faults that may influence groundwater flow. Spontaneous Potential (SP) logging is another geophysical method that can provide valuable information about the subsurface conditions relevant to groundwater investigation. The SP log measures natural electrical potentials in the ground that are generated by electrochemical processes occurring in the subsurface. These potentials can be indicative of changes in lithology, the presence of clay layers, or the location of potential water-bearing zones. When combined, SPR and SP logging can offer a comprehensive insight into the subsurface characteristics that influence groundwater occurrence and movement. By analyzing the data obtained from these geophysical surveys, hydrogeologists and water resource managers can better understand the geological structures, stratigraphy, and hydrogeological properties of the study area. The integration of SPR and SP logging data with hydrogeological information such as pumping tests and groundwater sampling can enhance the accuracy of groundwater resource assessments. This multi-method approach allows for a more robust interpretation of subsurface conditions, leading to improved groundwater exploration and management strategies. Overall, the use of Single-Point Resistance and SP logging in groundwater investigation offers a non-invasive and cost-effective means of characterizing subsurface conditions and identifying potential groundwater resources. By leveraging these geophysical techniques alongside traditional hydrogeological methods, stakeholders can make informed decisions regarding groundwater development, sustainability, and protection.

Project Overview

.0 Introduction

Water is one of the abundant and widely used natural resources available to man. Many communities obtain the water they need from rivers, lakes, or reservoirs, sometime using aqueduct or canals to bring water from distant surface sources. Another source of water lies directly beneath most towns. This resource is groundwater, the water that lies beneath the ground surface. The origin of water is traced to the process of the hydrologic cycle. When rain falls on the land surface as precipitation, more than half of the water returns rather rapidly to the atmosphere by evaporation or transportation from plants. The remainder either flows over the land surface as runoff to streams, rivers, and lakes, or soaks into the ground by infiltration to form groundwater. Rivers stream and lakes make up the surface occurrence while those that sink into the ground make up subsurface occurrence called ground water.

Groundwater is the water that lies beneath the ground surface, filling the pore spaces between grains in bodies of sediment and clastic sedimentary rocks and filling cracks crevices in all types of rocks (Plummer et al 1999). The subsurface zone in which all rocks opening are filled with water is saturated zone. The upper surface of the saturated zone is the water table. Groundwater is unfortunately not evenly distributed everywhere. The distribution of ground water depends on large extent upon the types and depth of occurrences (Oseji, 2010). Ground water in its natural state tends to be relatively free of contaminants in most areas. Because it is a widely used source of drinking water, the contamination of groundwater can be a very serious problem (Plummer et al., 1999). Groundwater can be contaminated by pesticides and herbicides (such as diazion, atarzine DEA and 2, 4, D) applied to agricultural crops Can find their way into groundwater when rain or irrigation water leaches the contaminants downward into the soil; Liquid and solid wastes from septic tanlas, sewage plants and animal. Feedlots and slaughterhouse may contain bacteria viruses, and parasite that can contaminate groundwater.

Ground exploitation sometime often result in failed and abortive borehole because of lack of preliminary geophysical investigation required to map and locate prolific zones within the aquifers (Atakpo et al., 2008). In order to avoid such an occurrence and to increase the probability of drilling successful and sustainable borehole, it becomes pertinent and economically wise to carry out prior geophysical investigation. Borehole electrical resistivity and spontaneous potential method is based on the variable resistance in surface materials to the conduction of electrical current depending on materials to the conduction of electrical current depending on variation in fluid content, density and chemical composition of the composition (Paransis, 1986). Recently other electrical geophysical method such as electro-magmatic induction (EM) and ground penetrating radar (GPR) becomes increasingly popular.                

1.1 Location of the Study Area

Otor-Jeremi is the headquarters of Ughelli south local government area of delta state, which came into existence on the 23rd of September, 1997 following the splitting of the defunct ughelli local government area into two, north and south local government areas. She lies between latitude 5o 58139. 011N and 5o 581 3011E and longitude 5o 301 5311N and 6o 011 04 511E. The local government area is made of six major clans namely Ughievwen, Ewu, Olomu, Effurun-otor, Okparabe and Arhavweren which make up the eleven wards of the local government area.

Fig 1: Map of Otor-Jeremi

1.2 Aims and Objective

The aim and objective of this work are.

To determine the lithology of the subsurface using spontaneous potential log.
To determine or identify the aquifer, depths and thickness of the rock using spontaneous potential log.
To determine the quality of water based on total dissolved solids using single point resistance log.
To determine the portability of the water.                                                              
1.3 Scope of the Study

This research work is limited to acquiring of field data using single point resistance log to evaluation of the quality of water based on total dissolved solid (TDS) and the lithology of the subsurface using spontaneous potential log.

Blazingprojects Mobile App

📚 Over 50,000 Project Materials
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Software coding and Machine construction
🎓 Postgraduate/Undergraduate Research works
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Geophysics. 4 min read

Application of Ground Penetrating Radar for Subsurface Imaging in Civil Engineering ...

The project topic "Application of Ground Penetrating Radar for Subsurface Imaging in Civil Engineering Projects" focuses on the utilization of Ground ...

BP
Blazingprojects
Read more →
Geophysics. 3 min read

Application of Seismic Reflection Imaging for Subsurface Characterization in an Oil ...

The project titled "Application of Seismic Reflection Imaging for Subsurface Characterization in an Oil and Gas Field" focuses on the utilization of s...

BP
Blazingprojects
Read more →
Geophysics. 2 min read

Integration of geophysical methods for mapping subsurface fractures in a study area...

The project topic, "Integration of geophysical methods for mapping subsurface fractures in a study area," focuses on the application of various geophy...

BP
Blazingprojects
Read more →
Geophysics. 2 min read

Application of Seismic Inversion Techniques for Reservoir Characterization in Oil an...

The project topic "Application of Seismic Inversion Techniques for Reservoir Characterization in Oil and Gas Exploration" focuses on the utilization o...

BP
Blazingprojects
Read more →
Geophysics. 2 min read

Application of Ground-Penetrating Radar in the Detection of Subsurface Features...

The project topic "Application of Ground-Penetrating Radar in the Detection of Subsurface Features" focuses on the utilization of ground-penetrating r...

BP
Blazingprojects
Read more →
Geophysics. 3 min read

Integration of Ground Penetrating Radar and Electrical Resistivity Tomography for Su...

The project titled "Integration of Ground Penetrating Radar and Electrical Resistivity Tomography for Subsurface Imaging" focuses on the combined appl...

BP
Blazingprojects
Read more →
Geophysics. 4 min read

Application of Machine Learning Algorithms in Seismic Data Analysis for Subsurface I...

The project on "Application of Machine Learning Algorithms in Seismic Data Analysis for Subsurface Imaging" aims to explore the potential of machine l...

BP
Blazingprojects
Read more →
Geophysics. 2 min read

Analysis of Seismic Data for Subsurface Characterization in an Oil Field...

The project titled "Analysis of Seismic Data for Subsurface Characterization in an Oil Field" aims to explore the application of seismic data analysis...

BP
Blazingprojects
Read more →
Geophysics. 3 min read

Application of Machine Learning Techniques in Seismic Data Interpretation for Subsur...

The project on "Application of Machine Learning Techniques in Seismic Data Interpretation for Subsurface Characterization" aims to explore the integra...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us