In this thesis, a novel approach for the protection of transmission lines which utilizes only coefficient energy for both detection and classification is proposed. The fault current signals generated by workspace on MATLAB simulation model have been analyzed using Daubechie-4 (d4) mother wavelet at 7th level decomposition with the help of Wavelet Toolbox embedded in MATLAB. A case study of 132kV, 160km transmission line has been used to test the novel approach. The value of the coefficient energy of the current signals gives the indication of fault and no-fault conditions. The energy of the three phase current signal (A,B,C) at 7th level decomposition were calculated as 0.1559×10-5, 0.1328 x10-5, 0.1737 x10-5 (for normal condition), 6.4200 x10-5, 1.7730 x10-5, 1.6660 x10-5 (for A-G fault), 667.1000 x10-5, 700.9000 x10-5, 0.7860 x10-5 (for AB-G fault), 677.8000 x10-5, 689.9000 x10-5, 0.1740 x10-5(for A-B fault), 885.6000 x10-5, 898.3000 x10-5, 832.7000 x10-5(for ABC fault). Also, the coefficient energy ratios were calculated to help classify the faults. The total ratio of the coefficient energies of the three phases were found to be approximately 3.4819 (for normal condition), 5.9177 (for A-G fault), 1741.4580 (AB-G fault), 7861.3448 (for A-B fault), 3.1423 (for ABC fault). Like the coefficient energy, the ratio was found to be increasing as the severity of the fault increases, except for L-L-L fault. Hence, both coefficient energy and ratio were employed in fault classification. With the approach presented in this work, ten classes of fault (A-G, B-G, C-G, A-B, B-C, A-C, AB-G, BC-G, AC-G & ABC) could be correctly identified and classified within fault duration of 0.085 seconds. The results therefore, demonstrate the proposed approach to be fast and reliable.
📚 Over 50,000 Project Materials
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Software coding and Machine construction
🎓 Postgraduate/Undergraduate Research works
📥 Instant Whatsapp/Email Delivery
The project titled "Design and Implementation of an Intelligent Energy Management System for Smart Buildings" focuses on the development of a sophisti...
The project topic "Design and Implementation of an Intelligent Energy Management System for Smart Grid Applications" focuses on the development and de...
The project on "Design and Implementation of Smart Home Energy Management System using IoT Technology" aims to develop a cutting-edge system that leve...
The project topic "Design and Implementation of a Smart Energy Management System for Residential Buildings" focuses on the development and application...
The project "Design and Implementation of an IoT-Based Smart Energy Management System for Residential Buildings" aims to address the growing need for ...
The project on "Design and implementation of a smart grid system for optimizing energy distribution and management" aims to address the pressing need ...
The project, "Design and Implementation of an Energy-Efficient Smart Home System using Internet of Things (IoT) Technology," aims to revolutionize res...
The project topic, "Design and Implementation of a Smart Grid System for Efficient Energy Management," focuses on developing a smart grid system to en...
The project on "Design and Implementation of a Smart Energy Management System for Residential Buildings using Internet of Things (IoT) Technology" aim...