Home / Biochemistry / Hepatoprotective effects of senna tora leaf extract on carbon tetrachloride induced toxicity

Hepatoprotective effects of senna tora leaf extract on carbon tetrachloride induced toxicity

 

Table Of Contents


Project Abstract

Abstract
The liver is a vital organ responsible for numerous physiological functions, including detoxification and metabolism. Hepatotoxicity induced by chemicals such as carbon tetrachloride (CCl4) poses a significant threat to liver health. Herbal medicines have gained attention for their potential hepatoprotective effects. Senna tora, a widely used traditional medicinal plant, has been investigated for its pharmacological properties, including hepatoprotective effects. This study aimed to evaluate the hepatoprotective effects of Senna tora leaf extract on CCl4-induced liver toxicity in experimental animal models. Rats were divided into four groups control, CCl4-treated, Senna tora leaf extract (STLE)-treated, and STLE plus CCl4-treated groups. The CCl4-treated group exhibited significant liver damage, as evidenced by elevated serum liver enzymes (ALT, AST) and histopathological changes. However, the STLE-treated group showed a significant reduction in liver enzyme levels and improvement in liver histology compared to the CCl4-treated group. Moreover, the STLE plus CCl4-treated group demonstrated a further reduction in liver enzyme levels and amelioration of liver damage compared to the CCl4-treated group. The hepatoprotective effects of Senna tora leaf extract may be attributed to its antioxidant, anti-inflammatory, and membrane-stabilizing properties. The extract's antioxidant components such as flavonoids, phenolic compounds, and tannins may scavenge free radicals generated by CCl4, thereby reducing oxidative stress and lipid peroxidation in the liver. Additionally, the anti-inflammatory effects of the extract may inhibit inflammatory mediators involved in liver injury. Furthermore, the membrane-stabilizing properties of Senna tora leaf extract may help maintain the structural integrity of liver cell membranes, preventing leakage of liver enzymes. In conclusion, Senna tora leaf extract demonstrated significant hepatoprotective effects against CCl4-induced liver toxicity in rats. The extract alleviated liver damage by reducing serum liver enzymes and improving liver histology. These findings highlight the potential of Senna tora as a natural hepatoprotective agent. Further studies are warranted to elucidate the underlying mechanisms of action and assess the extract's safety and efficacy for clinical use in liver disorders.

Project Overview

1.0 INTRODUCTION

Many of the developing countries including African countries like Nigeria practice traditional medicine as its main source of health care. This traditional medicine is normally gotten from plant origin [Rehan Ahmad et al, 2008, Stephen bent, 2008].Today nearly 88 percent of the global populations switch to plant derived medicines as their first line of defence for maintaining health and combating diseases [Kintzios et al,2006]. Presently there are about 60 types of medicinal plants that have been recognised in primary health care and are classified according to their pharmacological actions such as peptic ulcers, anti flatulence, laxative, antidiarrhoeal and anti hepatic [Viomolos et al,2003]. However in future the discovery of novel therapeutic agents will be only dependent on plant origin [Perumalsamy et al, 1999].

Senna tora is an example of traditional medicine with pharmacological actions as anticholesterolemic, antispasmodic, carninitative, emollients, ophthalmic and purgative [Polunin and Stainton,1984,Yeung,1985,Manandhar, 2002]. It can be cardiotonic, antiperiodic, anthelmintic and expectorant and can also be used in treating cough,leprosy ,ringworm ,colic,flatulence, constipation and other disorders[Natureserve,2007]. Senna tora formally regarded as cassia tora is capable of suppressing the production of prostaglandins and other inflammatory agonists such as cytokines, histamine, kinin and free radical.manila,1998 buttressed his observations confirming its use in the treatment of constipation, edema and liver protection in Korea.

Liver, the largest internal organ of the human body performs more than five hundred functions, all of which are very vital to life. The liver can regenerate or grow back cells that have been destroyed by short term injury or disease, but if the liver is damaged repeatedly over a long period of time, it may undergo irreversible changes which permanently interferes with its function.

Carbon tetrachloride is a toxic substance that interrupts the liver and its functions. This is to say that it damages the liver when ingested.CCL4 is stable in the presence of air and light, it is also inflammable. Despite its toxic effect on the liver, it is useful as grain fumigant ,pesticide etc. Equilibrium of the body fluids and secretions are altered as a result of carbon tetrachloride. For instance lipid metabolism, cholesterol metabolism and biotransformation functions of the liver are terminated or altered in the presence of CCL4.Thus carbon tetrachloride is lethal. The liver produces some enzyme such as aspartate amino transaminases, alkaline phosphatase, lactate dehydrogenase,gamma glutamyl transferase etc which catalyses the biochemical activities of the body, and on the attack of CCL4 to the liver ,these enzymes will not be produced.

Free radicals are highly reactive compounds with uneven number of electrons in their outermost orbit. This can react with cellular compounds like unsaturated fatty acids and can generate new free radicals which result in irreversible biochemical injury like membrane damage, apotosis and cell necrosis. Antioxidants scavenge free radicals and stop the subsequent reactions hence protecting the macromolecules and cellular environment from toxicity and degeneration [Hong B.O. Shao et al, 2008].The oxygen consumption inherent in cell growth leads to the generation of series of reactive oxygen species [ROS].The ROS are molecules such as superoxide anion radicals and hydroxyl radicals[OH]. ROS may be very damaging attacking the lipids of cell membrane and DNA mutation which may further propagate the propagation of many diseases[Valontao et al 2002,Gulcin et al 2003]. Reactive oxygen species are continuously produced during normal Physiological events and are removed by antioxidants defence mechanism [Buyukokuroglu et al,2001]. Many results have shown that some of the cassia species have acquired antimicrobial substances and antioxidant activities.

1.1 AIMS OF THE RESEARCH

The aim of this research is to find out hepatoprotective effects of senna tora leaf extract on carbon tetrachloride induced toxicity.

REFERENCES

Anders, M. W, and Jakobson, J. (1985). Biotran S Formation of Halogenated Solvents – Second J. Work Environ Health, 11(Sup PL I):23-32.

Armstrong, R. N. (1993). Glutathione S – Transferees; Structure and Mechanism of an Archetypical Detoxification Enzyme. Advanced Enzymolgy, 69:144. Available Online at http//www.biotrius /lLab/cancer/html.

Bagnasco, F. M., Shrines, B. and Muslim, A. M. (2001). Carbon Tetrachloride Poisoning: Adiographic Findings. NY State J. Med, 78:646-647.

Betteridge, D. J. (2000). What is Oxidative Stress Metabolism, 49:3-8.

Burk R. F, Patel, K. and Iane, J.M. (1984). Reduced Glutathione Protection Against Carbon Tetrachloride Induced Hepatic Miciosomal Lipid Peroxidation and Covalent Binding in the Rat. J. Clin Invest, 74:1996 – 2001.

Buttler, J. C. (1961). Liver in Toxication. J. Pharmacol Exp The. 143: 311-319.

Crawford, M. C. (2003). Current Diagnosis and Treatment on Cardiology. 2nd Edition. New York: Lang Medical Books/McGraw-Hill Medical Publishing Division pp 1529.

sKndo, A (1992). The Discovery and Development of HMG CoA Reductase Inhibiters. http://en.wikipedia. Org/wiki/statin.

Gamble, J. S (1972). A Manual of Indian Timbers, Bishen Singh mahandra pal Singh.

Ganett, R. R and Grishman, C. M (1999). Cholesterol: Garrett and Grishman Biochemistry, 2nd Edition. Thomson Books Coole, USA. Pp.03 – 350.

Halliwell, B., Muicia, M.A., Chirico, S and Aruome, O. I (1995). Free Radicals and Antioxidants in Food and Invivo: What they do and how they work Crit Rev Food Sci. Nutri., 35:7 – 20.

Holly. S. (1996). Lipid Peroxidation Occur via Metabolic Intermediates. Marnett L. J. Mutation Research 1997 Man 8; 424:83 – 95.

Jones P; Katonek 5, Laurora I. Hunning Shake D. (1998). Comparative Dose Efficiency Study of Atorvastation.

Kenaga B. (1995). Tissue Levels of Carbon Tetrachloride After Gastric Infusions. Proc Nati. Acad. Sci. USA. 98 – 83.

Ken, B. (2004). Reversing Liver Damage: 515. John Wiley and Sons, New York. Available Online at http//www.pubmodcentral.Nih/gov/articte–renderartid.

Khurana, V., Bejjanki. H.R., Caldito. G., Owens. M.W. (2007). Stations Reduce the Risk of Lung Cancer in Humans a Large Case Control Study of us Verterans. http://en. Wikipedia. Org/wiki/stin.

Klein, Barbara E.K., Ronald M.D., Kristine G., Losa M. (2006). Statin Use and Incident Nuclear Cataract. http:en. Wikipedia. Org/wiki/ statin.

Kim, H. J. Odendhal, S. & Bruckner, J. V (1995). Effect of Dosing Vehicles on the Acute Hepatoxicity of Carbon Tetrachloride in Rats. Toxicol. Allp. Pharmacol; 102, 34 – 49.

Manaudhau, N. P. (2002). Plants and People of Nkpal, Timber Press Oregon ISBN 0 – 85 192 – 527 – 6.

Manila, (1998). Medical Plants in the Republic of Korea. World Health Organization ISBN 92 – 9061 – 120 -0.

Marchard, C., McLean, S. and plea G.L. (1990). The Effect of SKF. 525A on the Distribution 259: 2135 – 2143. Available on Link at http://www.inchem. Org/documents ehk/ehc/ek 28. html.

MC Gregor, D. and Lang M. (1996). Carbon Tetrachloride; Genetic Effects and other Modes of Action. Mutate Res, 366: 181 – 195.

Muphy, S. D., and Malley, S. (1969). Effects of Carbon Tetrachloride on Induction of Liver Enzymes by Acute Stress of Corticosterones Toxtcol, Appl Pharmacol, 15: 117 – 130.

Moss, D.W.; Henderson, A.R. and Kachmar, J.R. (1986). Enzymes. In N. W. Tietz(ed); Textbook of Clinical Chemistry (Philade/Phin: W.B. Saunders), Pp. 619 – 663.

Munoz Torres, E., Paz Bouza, J. I, A bad Hernandez. M. M, Alonso Martin, M.J. and Lopez Brano A. (1988). Experimental Carbon Tetrachloride Induced Cirrhosis of the Liver. Int J. Tissue React, X: 245 – 251.

Murray, R.K., Granner, D.K., Mayeis, P.A. and Rod Owel. V.W. (2003). Harper’s Biochemistry 26th ed. McGraw Publisher, New York.

Nakata, R. Tsukamoto I., Miyoshi, M. and Kojo S. (1985). Liver Regeneration After Carbon Tetrachloride Intoxication in the Rat, Biochem Pharmacol, 34: 586-588. Available online at http://www.inchem/org/documents/ehc/ehc/ehc 208. html.

National Library of Medicine (1997). Hazardous Substances Data Bank – Bethseda, Maryland National Library of Medicine National Toxicology Information Programme. Available Online at http://www.inchem.org/document ehc/ehc/ehc 208. htm.

Packer, J.E., Slater, T.F. and Wilson, R.L., (1978). Reactions of the Carbon Tetrachloride Related Peroxy Free Radical (CCL3O20) with Amino Acids: Pulse Radiolysis Evidence Life Sci,. 23: 2617 – 2620. Available online at http://www.inchem.org/documents/ehc/ehc/ehc. 208 html.

Paul, B. B, and Rublistein, D. (1993). Metabolism of Carbon Tetrachloride and Chloroform by the Rat. J. Pharmacol E x Ther, 141: 141 – 148.

Rej, R., and Horder, M. (1983). Aspartate Aminotransferase. In Methods of Enzymatic Analysis. Bergmeyer H. U., Bergmeyer J. Grasse M. Eds Wein. Hein, verlag chemic 3:416- 433.

Sies, H. (1997). Oxidative Stress; Oxidants and Antioxidants. Exp Physiol 82: 291 – 295. Available Online at http:/www.pdf Health.com /drug info./nm drug profiles/nuts up drugs/glu 0126. shtml.

Song, Z Joshi – Barve, S., and McClain, C. J. (2004). A Drances in Alcoholic Liver Disease. Curr Gastroenterol Rep, 6:21 – 76.

Withey, J.R., Collins, B.T., and Collins, P.G. (1983). Effects of Vehicle on PharmaCokinetics and Uptake of Four Halogenated Hydrocarbons from the Gastrointestinal Tract of the Rat. J. APPL Toxicol, 3:249 – 253. Retrieved July 1 2010 from http:/www.inchem.org/documents/ehc/ehc/ehc 208. html.

Wolozin B, Wang S.W., Li N.C., Lec. H., Tee. T.A., Kazis L.E. (2007). Sima Stain is Associated. With a Reduced Incidence of Dementia and Parkinson’s Diseases. http://en wikipedia. Org/Wiki/ statin.

Versus S. Moastatin, Pravastatin, Lovastatin and Fluvastatin in Patients with Hypercholesterolemia. Http://en.wiki Redia. Org/Wiki/Statin.


Blazingprojects Mobile App

📚 Over 50,000 Project Materials
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Software coding and Machine construction
🎓 Postgraduate/Undergraduate Research works
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Biochemistry. 2 min read

Exploring the Role of MicroRNAs in Cancer Progression and Therapeutic Resistance...

The project titled "Exploring the Role of MicroRNAs in Cancer Progression and Therapeutic Resistance" aims to investigate the intricate involvement of...

BP
Blazingprojects
Read more →
Biochemistry. 4 min read

Exploring the Role of MicroRNAs in Cancer Development and Progression...

The project topic, "Exploring the Role of MicroRNAs in Cancer Development and Progression," focuses on investigating the intricate involvement of micr...

BP
Blazingprojects
Read more →
Biochemistry. 3 min read

Exploring the Role of MicroRNAs in Cancer Progression and Therapeutic Potential...

The project topic, "Exploring the Role of MicroRNAs in Cancer Progression and Therapeutic Potential," delves into the intricate world of microRNAs and...

BP
Blazingprojects
Read more →
Biochemistry. 2 min read

Investigating the role of microRNAs in regulating gene expression in cancer cells....

The project titled "Investigating the role of microRNAs in regulating gene expression in cancer cells" aims to delve into the intricate mechanisms by ...

BP
Blazingprojects
Read more →
Biochemistry. 3 min read

Exploring the Role of Epigenetics in Cancer Development and Therapeutic Approaches...

The project titled "Exploring the Role of Epigenetics in Cancer Development and Therapeutic Approaches" aims to investigate the intricate relationship...

BP
Blazingprojects
Read more →
Biochemistry. 4 min read

Identification and Characterization of Novel Enzymes Involved in Plant Secondary Met...

The project on "Identification and Characterization of Novel Enzymes Involved in Plant Secondary Metabolite Biosynthesis" aims to explore the intricat...

BP
Blazingprojects
Read more →
Biochemistry. 2 min read

Exploring the Role of Gut Microbiota in Human Health and Disease...

The project topic, "Exploring the Role of Gut Microbiota in Human Health and Disease," delves into the intricate relationship between gut microbiota a...

BP
Blazingprojects
Read more →
Biochemistry. 4 min read

Investigating the Effects of Different pH Levels on Enzyme Activity in Biological Sy...

The project topic, "Investigating the Effects of Different pH Levels on Enzyme Activity in Biological Systems," focuses on exploring how varying pH le...

BP
Blazingprojects
Read more →
Biochemistry. 3 min read

Investigating the role of epigenetic modifications in cancer development and progres...

The project "Investigating the role of epigenetic modifications in cancer development and progression" aims to explore the intricate relationship betw...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us