The antihelminthic activity of methanolic extracts of leaf, stembark and root of Azadirachtaindica were evaluated in vitro againstHaemonchuscontortus larvae. Phytochemical screening conducted on the extracts of all the plant parts revealed the presence of carbohydrates, cardiac glycoside, saponins, flavonoids, tannins and alkaloids, leaf had steroids, while stembark and root had triterpenes. The quantitative estimation of the phytochemical constituents revealed a high percentage in flavonoids followed by alkaloids and tannins with least quantitative percentages insaponins 20.21, 27.50, 20.95; 5.25, 5.48, 5.48; 4.95, 4.93, 4.15 and 0.75, 0.68, 0.67respectively. Eggs of H.contortus were cultured in culture plates maintained at 27°C in an incubator. The infective third stage larvae (L3) were recovered from 7-9 day old sterilefaecal cultures. The larvae harvested were concentrated at 1000 rpm for 15 minutes, 0.1 ml of the larvae containing 120 L3 were put into wells of microtitre plate and concentrations of each of the extracts (leaf, stembark and root) at 0.1mg/ml, 1.0mg/ml, 10.0mg/ml, 100mg/ml, negative control (water) and positive control (Levamisole) were added to each of the wells with six replication. After addition of the treatments, it was viewed under the microscope once in 6 hours for a period of 48 hours and the number of mortality recorded. The lethal concentration (LC50/ EC) value for the leafis 12.30mgml 1,12.58mgml-1 for the stem bark and 15.84mgml-1 for the root extract. Mortalities of the parasites increased with increase in the concentration and with the time of exposure. At the peak time of exposure (48 hours) and at the highest concentration of 100mgml-l, mortalities were higher than those of the least time of exposure (6 hours) and with the lowest concentration of 0.1mgml-1. The data showed highly significant differences between the plant parts, time of exposure, concentration of the extracts, the time of exposure and concentration and between the plant parts and concentration (p=0.001). Although, mortality of the parasites increased with increase in time, there were no significant differences between the plant parts and the time of exposure (p=0.92) and between the plant parts, time of exposure and concentration (p=0.99).Mortalities recorded were high in the positive control wells with increase in mortality as the time of exposure increased but in the negative control wells, mortalities were not recorded. The study concludes that mortalities recorded were due to the effects of the extracts on the parasites. Validation of the efficacy of the extracts of this plant is suggested to determine the effects of natural or experimental haemonchosis in ruminants.
Introduction
Azadirachta indica,commonly known as neem in English and Dogonyaro in Hausa,is an evergreentree in the Mahogany family Meliaceae. It is native to India, Pakistan and Burma, growing in tropical and semi-tropical regions (Balakrishnan et al., 2007).
It is the most versatile, multifarious tree of the tropics with immense potential growing to about 25m in height with semi-straight to straight trunk, 3m in girth and spreading branches forming a broad crown (Kumar and Gupta,2002).
It possesses useful non-wood products (leaves, bark, flowers, fruits, seed, gum, oil and neem cake) than any other tree species. These non-wood products are known to have antidermatic, antifeedent, antifungal, anti-inflammatory antipyorrhoeic, antiscabic, cardiac, diuretic, insecticidal, larvicidal, nematocidal, spermicidal and other biological activities (Brahmachari,2004). The wider application and activities of neem have made it a green treasure (Khanna, 1992,Suri and Mehrotra 1994).
The tree has adaptability to a wide range of climatic, topographic and edaphic factors. It thrives well in dry, stony shallow soils and even on hard calcareous soils or clay pan at a shallow depth (Koul et al.,1990,Schmutterer, 1990).
Neem tree requires little water and plenty of sunlight (Anonymous,2006, Sateesh,1998). The tree grows naturally in areas where the rainfall is in the range of 450 to 1200 mm.However, it has been introduced successfully even in areas where the rainfall is as low as 150 to 250 mm. It grows on altitudes up to 1500 m (Chari, 1996, Jattan et al., 1995, Tewari, 1992).
📚 Over 50,000 Project Materials
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Software coding and Machine construction
🎓 Postgraduate/Undergraduate Research works
📥 Instant Whatsapp/Email Delivery
The project titled "Exploring the Role of MicroRNAs in Cancer Progression and Therapeutic Resistance" aims to investigate the intricate involvement of...
The project topic, "Exploring the Role of MicroRNAs in Cancer Development and Progression," focuses on investigating the intricate involvement of micr...
The project topic, "Exploring the Role of MicroRNAs in Cancer Progression and Therapeutic Potential," delves into the intricate world of microRNAs and...
The project titled "Investigating the role of microRNAs in regulating gene expression in cancer cells" aims to delve into the intricate mechanisms by ...
The project titled "Exploring the Role of Epigenetics in Cancer Development and Therapeutic Approaches" aims to investigate the intricate relationship...
The project on "Identification and Characterization of Novel Enzymes Involved in Plant Secondary Metabolite Biosynthesis" aims to explore the intricat...
The project topic, "Exploring the Role of Gut Microbiota in Human Health and Disease," delves into the intricate relationship between gut microbiota a...
The project topic, "Investigating the Effects of Different pH Levels on Enzyme Activity in Biological Systems," focuses on exploring how varying pH le...
The project "Investigating the role of epigenetic modifications in cancer development and progression" aims to explore the intricate relationship betw...