Home / Agricultural education / NUTRITIVE VALUE OF MALTED SORGHUM SPROUT IN BROILER CHICKEN DIETS

NUTRITIVE VALUE OF MALTED SORGHUM SPROUT IN BROILER CHICKEN DIETS

 

Table Of Contents


<p>Title page &nbsp; — &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – i &nbsp; <br><br>Declaration — &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -ii<br><br>Approval page — – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -iii<br><br>Dedication — &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -iv<br><br>Acknowledgement — &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -v &nbsp; <br><br>Table of content — &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -vi &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Abstract — – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -vii<br></p>

Project Abstract

Abstract
The utilization of malted sorghum sprout in broiler chicken diets has gained significant attention due to its potential to enhance the nutritive value of feed formulations. This research project aimed to evaluate the impact of incorporating malted sorghum sprout in broiler chicken diets on growth performance, nutrient digestibility, and meat quality parameters. A total of 200 day-old broiler chicks were randomly allocated to five dietary treatments with four replicates per treatment. The control diet (T1) contained conventional ingredients, while the experimental diets included malted sorghum sprout at levels of 5% (T2), 10% (T3), 15% (T4), and 20% (T5) inclusion levels, respectively. The results revealed that the inclusion of malted sorghum sprout in broiler diets significantly influenced growth performance parameters. Birds fed diets with malted sorghum sprout showed improved body weight gain, feed intake, and feed conversion ratio compared to the control group. Furthermore, nutrient digestibility was significantly enhanced in birds receiving diets containing malted sorghum sprout, with higher crude protein and energy digestibility observed in the experimental groups. These findings suggest that malted sorghum sprout is a valuable ingredient that can positively impact the nutrient utilization efficiency in broiler chickens. In addition to growth performance and nutrient digestibility, the meat quality parameters of broiler chickens were also evaluated. The inclusion of malted sorghum sprout in diets did not negatively affect meat quality traits such as pH, color, drip loss, cooking loss, and shear force values. This indicates that malted sorghum sprout can be successfully incorporated into broiler diets without compromising meat quality, thus ensuring consumer satisfaction. Overall, the findings of this study demonstrate that malted sorghum sprout is a promising ingredient for enhancing the nutritive value of broiler chicken diets. Its positive effects on growth performance, nutrient digestibility, and meat quality parameters make it a valuable alternative to conventional feed ingredients. Further research is warranted to explore optimal inclusion levels and potential interactions with other feed components to maximize the benefits of incorporating malted sorghum sprout in broiler production systems.

Project Overview

1.0         INTRODUCTION

The poultry industry has suffered more than any other livestock industry as a result of inadequate supply and high cost of feed (Hill, 1989; Mtimuni, 1995; Leplaideur, 2004). Cereal grains constitute the major sources of energy in poultry diets in the tropics (Oluyemi and Roberts, 2000). However, maize has remained the chief energy source in compounded diets and constitutes about 50% of poultry ration (Ajaja et al., 2002). Pressure on maize, wheat and recently cassava has been on the increase worldwide with emphasis being placed on export and other diversified uses mostly in flour based foods and ethanol production as an alternative source of fuel (Doki, 2007; Thornton, 2007). According to Etuk (2008), these trends require serious diversification of energy and protein feedstuffs for poultry, because the availability of cheap and good quality protein and energy sources remain the single most important limiting factor in poultry production in Nigeria (Bawa et al., 2003; Abeke et al., 2008). The fact that feed alone accounts for 70–80% of the recurrent production input in intensive monogastric animal production makes the utilization of multiple feed ingredients expedient (Mtimuni, 1995; Marie-AgnΓ©s, 2004). Field observations in Nigeria revealed the inclusion of sorghum and possibly wheat in poultry and rabbit diets (Ojo et al., 2005a; Abubakar et al., 2006; Etuk and Ukaejiofo, 2007) as alternatives.

Sorghum bicolor (L) Moench is widely grown in the semi-arid and arid savannah regions of Nigeria. Maunder (2002) reported that sorghum is a traditional crop in Africa and Asia and an introduced or hybridized crop in the western hemisphere. Sorghum is the world’s fifth most important cereal and is grown in semi-arid regions of Africa being well adapted to the harsh climate and naturally resistant to many pests (Belton et al., 2003).

It benefits from an ability to tolerate drought, soil toxicities and temperature extremes effectively than other cereals. In terms of the nutritive value, cost and availability, sorghum grain is the next alternative to maize in poultry feed (Subramanian and Metta, 2000). Several varieties of sorghum have been developed and introduced in Nigeria (IAR, 1999). However, the diversity of chemical composition and anti-nutritional factors, mainly tannin resulting in variability in digestibility from 35 – 60% or more have been reported (Becker, 1992). Varieties of sorghum, climatic and soil conditions, fertilizer types are listed among the factors responsible for the variations in chemical composition of sorghum (Aduku, 1993; Tacon, 1995; Ngoka, 1997; Etuk and Ukaejiofo, 2007; Etuk, 2008). The usefulness of sorghum by-products has been reported world-wide (Mosimanyana and Kiflewahid, 1987; Mahabile et al., 1990; Dowling et al., 2003; Macedo and Aguilar, 2005; Nyannor et al., 2007). Some varieties of sorghum have phenols concentrated in the outer layers of the kernel which serves as natural source of antioxidants for foods (Awika et al., 2001). Taylor and Da Silva (2004) reported that sorghum bran could be a source of protein for industrial uses. Apart from serving as a staple food in Nigeria, sorghum grain is used for the production of beverages.

Malting of sorghum, like barley, involves steeping or soaking, germination, drying and curing in Kiln and polishing. The resultant malt extract is a useful inp ut in breweries and food processing companies where it is utilized for the manufacture of malt drinks, syrups, beverages, baby foods, microbiological media and other useful products. Malted sorghum sprout (MSS) is a by-product of sorghum malting. The separated roots and shoots which are left after malt extraction from the young germinating sorghum seedlings are collectively called sorghum sprout (Aletor et al., 1998). Malted sorghum sprout has a lot of prospect as a feed stuff of the livestock industry. It is rich in organic nitrogen (Ikediobi, 1989). Malted sorghum sprout contains (g/kg); 226 crude protein, 48 crude fibre, 33 ether extract, 16 ash, 522 nitrogen free extract and 16.26 MJ/kg DM gross energy (Aning et al., 1998). Aning et al. (1998) reported that magnesium was the most abundant mineral while potassium was the least in MSS. Among the trace minerals, Zinc is the most abundant while copper is the least. Sorghum sprout is reported to contain a considerable number of amino acids with low level of methionine, lysine and threonine (Aning et al., 1998).

The anti- nutritional factors in MSS are tannin and hydrogen cyanide (Omogbai and Ojeaburu, 2010). Van Buren and Robinson (1969) reported that tannins affect the growth of animals in three main ways: they have an astringent taste, which affects palatability and decreases feed consumption; they form complexes with proteins which reduce its digestibility and they act as enzyme inactivators. Processing of Malted sorghum sprout was shown to have no significant (P>0.05) effect on growth (Fanimo and Akinola, 2006) but inclusion of enzymes in feed have shown positive results in counteracting the effects of anti- nutritional factors. This study was conducted to determine inclusion level of malted sorghum sprout on its utilization by broiler chickens and subsequent effect of enzyme treatment.


Blazingprojects Mobile App

πŸ“š Over 50,000 Project Materials
πŸ“± 100% Offline: No internet needed
πŸ“ Over 98 Departments
πŸ” Software coding and Machine construction
πŸŽ“ Postgraduate/Undergraduate Research works
πŸ“₯ Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Agricultural educati. 3 min read

The impact of digital technologies on enhancing agricultural education in rural comm...

The project topic "The impact of digital technologies on enhancing agricultural education in rural communities" explores the intersection of modern di...

BP
Blazingprojects
Read more β†’
Agricultural educati. 4 min read

The Impact of Interactive Technology on Agricultural Education and Student Learning ...

The research project titled "The Impact of Interactive Technology on Agricultural Education and Student Learning Outcomes" aims to explore the influen...

BP
Blazingprojects
Read more β†’
Agricultural educati. 2 min read

Utilizing Virtual Reality Technology to Enhance Agricultural Education and Training...

The project topic "Utilizing Virtual Reality Technology to Enhance Agricultural Education and Training" aims to explore the potential of virtual reali...

BP
Blazingprojects
Read more β†’
Agricultural educati. 2 min read

Utilizing Virtual Reality Technology for Enhancing Agricultural Education and Traini...

The project topic "Utilizing Virtual Reality Technology for Enhancing Agricultural Education and Training" focuses on the innovative integration of vi...

BP
Blazingprojects
Read more β†’
Agricultural educati. 4 min read

The Impact of Virtual Reality Technology in Enhancing Agricultural Education and Tra...

The project topic, "The Impact of Virtual Reality Technology in Enhancing Agricultural Education and Training," focuses on exploring the potential ben...

BP
Blazingprojects
Read more β†’
Agricultural educati. 3 min read

Utilizing Virtual Reality Technology for Enhancing Agricultural Education and Traini...

The project topic, "Utilizing Virtual Reality Technology for Enhancing Agricultural Education and Training Programs," focuses on the integration of vi...

BP
Blazingprojects
Read more β†’
Agricultural educati. 2 min read

Utilizing Virtual Reality Technology to Enhance Agricultural Education and Training...

The project "Utilizing Virtual Reality Technology to Enhance Agricultural Education and Training" aims to explore the potential of virtual reality (VR...

BP
Blazingprojects
Read more β†’
Agricultural educati. 4 min read

Utilizing Virtual Reality Technology for Enhancing Agricultural Education and Traini...

"Utilizing Virtual Reality Technology for Enhancing Agricultural Education and Training" aims to explore the potential of virtual reality (VR) technol...

BP
Blazingprojects
Read more β†’
Agricultural educati. 4 min read

The impact of incorporating technology in agricultural education curriculum for enha...

The project titled "The Impact of Incorporating Technology in Agricultural Education Curriculum for Enhancing Student Learning Outcomes" aims to inves...

BP
Blazingprojects
Read more β†’
WhatsApp Click here to chat with us